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The problem of finding the folding pathway of a polymer, a fundamental issue in the 
field of molecular biophysics, is viewed from a geometrical standpoint. A riemannian 
metric on conformation space related to hydrodynamical features of the system and a 
drift related to the potential are used to derive a diffusion equation governing the time- 
dependent probability in conformation space. The thermodynamic equilibrium limit is 
found to be consistent with Boltzmann's measure. 

1. I n t r o d u c t i o n  

The folding process of  polymer macromolecules is an extremely complex phe- 
nomenon  which has been approached using several theoretical tools. In [1] the 
problem of  finding the folding pa thway followed at the level of  secondary structure 
has been handled using techniques from the field of  discrete stochastic processes. A 
measure in the space of  all possible folding pathways  should be defined in such a 
way that, for a given secondary structure, it is concentrated a round  the most  prob-  
able folding pathway.  Experimental evidence of  the feasibility of  this kind of  treat- 
ment  has been furnished in [2]. 

F rom a more  theoretical point  of  view, this type of  construct ion is related to a 
certain geometr izat ion of  stochastic diffusions as described for instance by Nelson  
in [3]. There, a r iemannian metric cr representing the scale of  local f luctuations and 
a vector  field b representing the drift, are defined on a given differentiable manifold,  
the configurat ion space of  the system. This defines a stochastic diffusion. Then a 
related measure  on path space is defined which is, in a sense, equivalent to the sto- 
chastic diffusion. 

On the other  hand, Nelson 's  work [3] is mainly concerned with stochastic quanti-  
zation of  systems that can be described by a given classical lagrangian with stochas- 
tic least action principles, where cr represents the interaction with the background  
field. Al though dissipative systems are excluded from this least action principle 
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approach we will show that Nelson's basic geometric background is still appropri- 
ate for describing difussions mimicking the search in conformation space of flexible 
polymer chains. Such systems are of dissipative type. In a sense, this amounts  to 
giving a continuous version of the discrete stochastic process expounded in [1], 
which accurately describes the folding process resolved up to secondary structure. 

Our aim in the present paper consists in establishing this fact via fundamental  
principles of physics, namely using some basic tools from polymer dynamics [4]. 
We show how to write the diffusion given by Smoluchowski equation, in Nelson's 
geometric terms, which paves the way for finding the corresponding measure on the 
space of  all possible folding pathways. Thus we provide theoretical evidence that  
the methods of polymer dynamics as described in [4] are also good to approach the 
problem of polymer folding, and ultimately lead to defining a measure in the space 
of  all possible folding pathways having the property stated above. In particular, the 
metric c~ defined on configuration space is essentially related to the viscosity of  the 
solvent, and thus the hydrodynamic treatment expounded in [4] applies. 

2. G e o m e t r i z a t i o n  o f  c o n f o r m a t i o n  space 

Here we study a polymer which, from the point of  view of the dynamics of the 
folding process, can be considered as a system of N beads subject to rigid con- 
straints, living in a solvent bath at temperature T and having friction constant (. 
The only kind of constraints to be considered in the present paper corresponds 
exactly to the f ree ly  rotat ing chain model of [4]. Let Ri ,  i = 1 , 2 . . .  N ,  be the three 
dimensional position vectors of the beads. More precisely, this means that the value 
of the angles formed by two consecutive vectors Rn - Rn-1 is a fixed number  inde- 
pendent of n, and that the euclidean norms [R,, - R~-ll remains fixed, for each n, 
along the evolution of the system. A more explicit description can be given as fol- 
lows. Let xi, i = 1 ,2 , . . .  N -  3, be given real numbers. Consider the following 
recursive formulas: 

Ri = Ri-I  + A ( x i - g ( R i - I  - R i - 2 ) ) ( R i - 2  - R i - 3 )  , i = 4, 5 . . .  N ,  

where for each u, v E R 3, the vector A ( u ) v  is obtained rotating the vector v an angle 
lul about  the vector u. For each x = (Xl, x 2 , . . ,  x u - 3 )  and given 3-dimensional vec- 
tors R1, R2 and R3, let R ( x ) E  R 3N be the element of R 3N defined by 
R ( x )  = (R1, R 2 , . . .  R N ) .  Let us assume for a moment  that R1, R2 and R3 are fixed 
given points o f R  3 and Ri ,  i = 4, 5 , . . .  N ,  are given by the previous recursive formu- 
las. The map  R is Xi-periodic in each coordinate xi, i = 1 ,2 . . .  N - 3, where 

27r 
X'i = [Ri+2 - Ri+I[ ' i = 1 ,2 , . . .  N - 3. 

Therefore, R induces an embedding R: T- - ,  R 3N, where T represents a 
(N - 3)-dimensional torus. On the other hand, for fixed R1, the system formed by 
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the three points Rl, R2 and R 3 is a rigid body, thus its position can be parametrized 
in a one-to-one and onto manner by a point in SO(3). Finally, since R1 may range 
freely over R 3, we obtain a natural extension of the previous embedding 

R : R 3 x SO(3) x T --~ R 3N . 

Let Q = R 3 x SO(3) x T for simplicity. Thus Q is a (N + 3)-dimensional mani- 
fold, which is the configuration space of the system and we have an embedding R of  
Q into R 3N. Any motion of the polymer is a curve orpath in Q, in particular, so is 
the folding pathway (see [1] for a more detailed description of the process of poly- 
mer folding). Forces acting on each bead are of several types: forces of mutual  
atraction and repulsion of short rank among beads, random forces due to thermal 
fluctuations, forces of viscosity type and the forces of the constraints. However, the 
t remendous complexity of this system, especially when the number N is high, makes 
it almost useless to try to find exact solutions. The statistical point of view turns out 
to be clearly more appropriate, and we shall explain how to deal with it. According 
to [4], 3.8, let g be the riemannian metric on Q inherited from the euclidean metr ic .  
(dot) in R 3N, through the embedding R. Thus, in local coordinates qi ,  i = 1,2,.. .  n, 
where n is the dimension of Q, we have the following: 

OR OR 
gij = - ~ "  OqJ " 

There is a well known natural volume element associated to the r iemannian 
metric g, which in local coordinates can be expressed as follows: 

V/~@l@2...@N+3. 

Let ~ / v ~  be the probability density with respect to the previous volume, that  
is, for any given measurable subset D of Q, the probability of finding the polymer in 
the set D is proport ional  to the integral of qS/v~ over D with respect to the volume. 
Then, according to [4], (3.162), (with a slight change of notation), the equation gov- 
erning the time evolution of q5 is the following: 

0~ - 0 [hiJ ( k s T  ~qJ + ~q j Oq i - vi 61" (1) 

Here h ij is (the inverse matrix of) a metric on Q that depends on the friction con- 
stant ~ and the constraints, k~ is the Boltzmann constant, U + k e T l o g  x/g is a 
potential on Q that describes the attraction and repulsion forces among the beads 
(this can be calculated from experimental data in particular cases, [1]) and V is a 
vector field on Q that takes into account the macroscopic flow, if any, of the sol- 
vent. Next, we must  switch to a more appropriate notation. Set 

kB Th q = o "ij , 
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U 
W -  

k B T  ' 

Zi  = -crij V j , 

thus Zis  a 1-form on Q. Then eq. (1) becomes 

o -oeL . 

(2) 

3. Folding  dynamics as viewed in the new geometric context 

We shall write Smoluchowski equation in a more intrinsic (not depending on 
the choice of local coordinates) way. The expression of the codifferential ~5 of a 
given 1-form a in local coordinates is the following [5]: 

1 (~qi ) )  6 ~ -  , /a  ( v % %  , (3) 

where ~rij is a given metric on Q and v@ is the square root of the determinant of 
the matrix er;j. Recall that the L a p l a c e - D e  R h a m  operator is by definition, 6d + d& 
Following [3] we shall call A the Dohrn -Guerra  Laplacian which, for functions and 
1-forms coincide with minus  the Laplace-De Rham operator. For a given function 
p on Q, we know that ~Sp = 0, then, in local coordinates, we have the following: 

1 0 ( v , T c r i j _ ~ )  (4, 
A p  -- x/~ Oq i 

Using the previous formulas, it follows by a straightforward calculation that 
Smoluchowski equation (2) can be written intrinsically as follows: 

op = Ap + ~(pb) 
Ot 

where b is a 1-form on Q, given in local coordinates by the following: 

0 
bi - ( W + log x/7) - Zi  

Oq i 

and 

¢ 
P--V,-  d - 

Finally, set 

erij = 2T U 
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and 

bi = 2ci.  

Then the previous formula becomes 

Op 1 A 
o t  - p + (5)  

We should remark  that  in (5), 6 and A are the codifferential and the Laplacian 
with respect to the new metric r0.. 

Equat ion (5) is precisely the Fokker-Planck equation corresponding to a smooth  
markovian  diffusion, and leads to the definition of  a measure  on path space that  
concentrates  precisely on the most  probable folding pathway,  as described in [3]. 
This should lead, at least for naturally selected molecules, to the same folding path- 
way found computat ional ly  in [1,2]. 

These facts constitute our main result. As a theoretical application that  takes 
advantage of  the geometric framework,  let us show how we can easily derive 
Boltzmann's  distribution law in the thermodynamic  limit. 

Let us assume an equilibrium state of  the system. In particular the macroscopic  
flow is zero, i.e. Z = 0. Besides, since p = p(q) is an equilibrium solution of  (5), the 
following equality holds: 

0 = ~Sd; + ~5(;dP), (6) 

where P = W + log v/-d. Now we introduce a function r on Q defined as follows: 

p = r e x p ( - P ) .  (7) 

A s t raightforward calculation shows that (6) is equivalent to the following: 

3(dr e x p ( - P ) )  = O, 

which immediately implies that 

f ~(drexp(-P))r = O, 

where the integral is taken with respect to the volume element canonically defined 
by the metric cr on the manifold Q. Since the differential operator  fi is the adjoint of  
the differential operator  d, with respect to the metric (,) induced by cr on forms, we 
have the following: 

J (exp(-P)dr, dr) = O. 

Since e x p ( - P )  > 0 and (,) is positive definite, we can conclude that  dr = 0, that  
is, r is a constant.  
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4. Conc lud ing  remarks  

By placing the folding process of flexible polymer chains in the proper hydrody- 
namical context, we obtain an appropriate riemannian geometry on conformation 
space. This leads naturally to a Smoluchowski-type equation for the time depen- 
dent distribution of conformation probabilities. We verify the consistency and 
coherence of our treatement by studying the thermodynamic limit and finding the 
equilibrium distribution, which corresponds to a Boltzmann-type distribution 
when the volume canonically associated to the metric is adopted. 

This research should be placed within a paradigm in which the statistical weights 
are placed not on conformations but on the folding pathways themselves [6]. Thus 
within a biologically-relevant in vitro context, the functional folding becomes the 
destination structure of the folding pathway which carries the highest statistical 
weight [6]. This destination structure must emerge within biologically-relevant 
timescales, typically incommensurate with the thermodynamic limit of infinite 
times [1,2,6]. Such an approach takes into account the time constraints associated 
to the problem and thus differs essentially from current paradigms in which the 
active conformation is identified with the global free energy minimum [7]. 

Considering folding pathways has led to a time-dependent distribution of fold- 
ing products which has been determined experimentally in specific folding contexts 
[8,9]. Furthermore, our kinetically-controlled simulations of RNA folding path- 
ways in vitro have been recently probed experimentally [10,11]. However, there is a 
need to provide the proper theoretical underpinnings to these findings, furnishing 
the underlying generic equation to be satisfied by the time-dependent distribution 
of folding products. This general issue has been addressed in this work. 
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